Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Phytochemical Analysis
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Metabolomic Approach Applied to a Liquid Chromatography Coupled to High‐Resolution Tandem Mass Spectrometry Method (HPLC‐ESI‐HRMS/MS): Towards the Comprehensive Evaluation of the Chemical Composition of Cannabis Medicinal Extracts

Authors: Cinzia Citti; Daniela Braghiroli; Maria Angela Vandelli; Martin G. Schmid; Giuseppe Cannazza; Umberto Maria Battisti; Umberto Maria Battisti; +1 Authors

A Metabolomic Approach Applied to a Liquid Chromatography Coupled to High‐Resolution Tandem Mass Spectrometry Method (HPLC‐ESI‐HRMS/MS): Towards the Comprehensive Evaluation of the Chemical Composition of Cannabis Medicinal Extracts

Abstract

AbstractIntroductionCannabis sativa L. is a powerful medicinal plant and its use has recently increased for the treatment of several pathologies. Nonetheless, side effects, like dizziness and hallucinations, and long‐term effects concerning memory and cognition, can occur. Most alarming is the lack of a standardised procedure to extract medicinal cannabis. Indeed, each galenical preparation has an unknown chemical composition in terms of cannabinoids and other active principles that depends on the extraction procedure.ObjectiveThis study aims to highlight the main differences in the chemical composition of Bediol® extracts when the extraction is carried out with either ethyl alcohol or olive oil for various times (0, 60, 120 and 180 min for ethyl alcohol, and 0, 60, 90 and 120 min for olive oil).Methodology.Cannabis medicinal extracts (CMEs) were analysed by liquid chromatography coupled to high‐resolution tandem mass spectrometry (LC–MS/MS) using an untargeted metabolomics approach. The data sets were processed by unsupervised multivariate analysis.ResultsOur results suggested that the main difference lies in the ratio of acid to decarboxylated cannabinoids, which dramatically influences the pharmacological activity of CMEs. Minor cannabinoids, alkaloids, and amino acids contributing to this difference are also discussed. The main cannabinoids were quantified in each extract applying a recently validated LC–MS and LC‐UV method.ConclusionsNotwithstanding the use of a standardised starting plant material, great changes are caused by different extraction procedures. The metabolomics approach is a useful tool for the evaluation of the chemical composition of cannabis extracts. Copyright © 2017 John Wiley & Sons, Ltd.

Country
Italy
Keywords

Spectrometry, Mass, Electrospray Ionization, Time Factors, Ethanol, Cannabinoids, Plant Extracts, Reproducibility of Results, Medical Marijuana, Alkaloids, Cannabis medicinal extracts; cannabinoids extraction; metabolomics; mass spectrometry, Tandem Mass Spectrometry, Metabolomics, Amino Acids, Olive Oil, Chromatography, High Pressure Liquid, Cannabis

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research