Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Photovol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

35 years of photovoltaics: Analysis of the TISO‐10‐kW solar plant, lessons learnt in safety and performance—Part 2

Authors: Eleonora Annigoni; Alessandro Virtuani; Mauro Caccivio; Gabi Friesen; Domenico Chianese; Christophe Ballif;

35 years of photovoltaics: Analysis of the TISO‐10‐kW solar plant, lessons learnt in safety and performance—Part 2

Abstract

AbstractThe TISO‐10‐kW plant, installed in Lugano (Switzerland) in 1982, is the first grid‐connected PV plant in Europe. In a joint publication (part 1), we presented the results of the electrical characterization performed in 2017—after 35 years of operation—of the 288 Arco Solar modules constituting the plant. Power degradation rates were different among modules and two groups could clearly be distinguished: group 1, with a remarkably low mean degradation rate of −0.2% per year, and group 2, with a mean degradation of −0.69% per year. After 35 in a temperate climate, approximately 70% of the modules (considering a ±3% measurement uncertainty) still exhibit a performance higher than 80% of their initial value. In this paper, when possible, we attempt at correlating module performance losses to specific failure mechanisms. For this sake, an extensive characterization of the modules was performed using visual inspection, IV curve measurements, electroluminescence, and infrared imaging. We remarkably find that module degradation rates are highly correlated to the aging pattern of the encapsulants used in module manufacturing. In particular, a specific formulation of the encapsulant (PVB), which was used only in a minority of the modules (approximately 10%), leads to degradation rates of −0.2% per year, which corresponds to a loss in performance below 10% over 35 years. Potential safety threats are also investigated, by measuring the frame continuity, the functionality of the bypass diodes, and the module insulation. Finally, we discuss how the analysis of a 35‐year‐old PV module technology could benefit the industry in order to target PV module lifetimes of 40+ years.

Country
Switzerland
Keywords

photovoltaic modules, reliability, crystalline silicon, long-term performance, failure modes, durability, wear-out mechanisms, degradation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 1%
Top 10%
Top 10%