
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
III‐V//Si multijunction solar cells with 30% efficiency using smart stack technology with Pd nanoparticle array

doi: 10.1002/pip.3200
III‐V//Si multijunction solar cells with 30% efficiency using smart stack technology with Pd nanoparticle array
AbstractMultijunction (MJ) solar cells achieve very high efficiencies by effectively utilizing the entire solar spectrum. Previously, we constructed a III‐V//Si MJ solar cell using the smart stack technology, a unique mechanical stacking technology with Pd nanoparticle array. In this study, we fabricated an InGaP/AlGaAs//Si three‐junction solar cell with an efficiency of 30.8% under AM 1.5G solar spectrum illumination. This efficiency is considerably higher than our previous result (25.1%). The superior performance was achieved by optimizing the structure of the upper GaAs‐based cell and employing a tunnel oxide passivated contact Si cell. Furthermore, we examined the low solar concentration performance of the device and obtained a maximum efficiency of 32.6% at 5.5 suns. This performance is sufficient for realistic low concentration photovoltaic applications (below 10 suns). In addition, we characterize the reliability of the InGaP/AlGaAs//Si three‐junction solar cell with a damp heat test (85 °C and 85% humidity for 1000 h). It was confirmed that our solar cells have high long‐term stability under severe conditions. The results demonstrate the potential of GaAs//Si MJ solar cells as next‐generation photovoltaic cells and the effectiveness of smart stack technology in fabricating multijunction cells.
