
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
International collaboration framework for the calculation of performance loss rates: Data quality, benchmarks, and trends (towards a uniform methodology)

doi: 10.1002/pip.3397
AbstractThe IEA PVPS Task 13 group, experts who focus on photovoltaic performance, operation, and reliability from several leading R&D centers, universities, and industrial companies, is developing a framework for the calculation of performance loss rates of a large number of commercial and research photovoltaic (PV) power plants and their related weather data coming across various climatic zones. The general steps to calculate the performance loss rate are (i) input data cleaning and grading; (ii) data filtering; (iii) performance metric selection, corrections, and aggregation; and finally, (iv) application of a statistical modeling method to determine the performance loss rate value. In this study, several high‐quality power and irradiance datasets have been shared, and the participants of the study were asked to calculate the performance loss rate of each individual system using their preferred methodologies. The data are used for benchmarking activities and to define capabilities and uncertainties of all the various methods. The combination of data filtering, metrics (performance ratio or power based), and statistical modeling methods are benchmarked in terms of (i) their deviation from the average value and (ii) their uncertainty, standard error, and confidence intervals. It was observed that careful data filtering is an essential foundation for reliable performance loss rate calculations. Furthermore, the selection of the calculation steps filter/metric/statistical method is highly dependent on one another, and the steps should not be assessed individually.
- Case Western Reserve University United States
- National University of Singapore Singapore
- University of Ljubljana Slovenia
- Stanford University United States
- Winterthur Museum Garden and Library United States
Renewable Energy, Sustainability and the Environment, PV system degradation, Condensed Matter Physics, performance loss rate, degradation rate, Electronic, Optical and Magnetic Materials, PV system performance, SDG 7 - Affordable and Clean Energy, Electrical and Electronic Engineering
Renewable Energy, Sustainability and the Environment, PV system degradation, Condensed Matter Physics, performance loss rate, degradation rate, Electronic, Optical and Magnetic Materials, PV system performance, SDG 7 - Affordable and Clean Energy, Electrical and Electronic Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).38 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
