Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Photovol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

III‐V//CuxIn1−yGaySe2 multijunction solar cells with 27.2% efficiency fabricated using modified smart stack technology with Pd nanoparticle array and adhesive material

Authors: Kikuo Makita; Yukiko Kamikawa; Hidenori Mizuno; Ryuji Oshima; Yasushi Shoji; Shogo Ishizuka; Ralph Müller; +6 Authors

III‐V//CuxIn1−yGaySe2 multijunction solar cells with 27.2% efficiency fabricated using modified smart stack technology with Pd nanoparticle array and adhesive material

Abstract

AbstractMultijunction (MJ) solar cells achieve high efficiencies by effectively utilizing the solar spectrum. Previously, we have developed III‐V MJ solar cells using smart stack technology, a mechanical stacking technology that uses a Pd nanoparticle array. In this study, we fabricated an InGaP/AlGaAs//CuxIn1−yGaySe2 three‐junction solar cell by applying modified smart stack technology with a Pd nanoparticle array and adhesive material. Using adhesive material (silicone adhesive), the bonding stability was improved conspicuously. The total efficiency achieved was 27.2% under AM 1.5 G solar spectrum illumination, which is a better performance compared to our previous result (24.2%) for a two‐terminal solar cell. The performance was achieved by optimizing the structure of the upper GaAs‐based cell and by using a CuxIn1−yGaySe2 solar cell with a specialized performance for an MJ configuration. In addition, we assessed the reliability of the InGaP/AlGaAs//CuxIn1−yGaySe2 three‐junction solar cell through a heat cycle test (from −40°C to +85°C; 50 cycles) and were able to confirm that our solar cells show high resistivity under severe conditions. The results demonstrate the potential of III‐V//CuxIn1−yGaySe2 MJ solar cells as next‐generation photovoltaic cells for applications such as vehicle‐integrated photovoltaics; they also demonstrate the effectiveness of modified smart stack technology in fabricating MJ cells.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research