Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Photovol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life cycle assessment of photovoltaic module backsheets

Authors: Paul de Wild; Mariska de Wild‐Scholten; Imco Goudswaard;

Life cycle assessment of photovoltaic module backsheets

Abstract

AbstractIncreased deployment of solar photovoltaic (PV) enables the transition to decarbonized energy systems, capable of tempering the dire consequences of global warming. Even though backsheets are very important regarding lifetime energy yield of the PV module, the environmental impacts of their production, use, and end‐of‐life (EoL) processing are largely neglected. As part of a recently finalized Dutch national project EXTENSIBLE (Energy yield assessment of neXT gENeration and SustaInaBLE backsheets), the environmental impacts for 7 different polymeric backsheets have been evaluated via a life cycle assessment (LCA). The selected backsheets include 3 traditional polyethylene terephthalate (PET)‐based backsheets with a fluorine containing outer layer (two white pigmented and one fully transparent). The other 4 backsheets are novel high‐performance polyolefin (PO)‐based backsheets, manufactured by Endurans Solar™, also including one transparent version. From results of the LCA, it is concluded that in comparison with PET‐based backsheets and fluoropolymer containing backsheets, PO‐based backsheets perform best in terms of energy yield, reliability, and environmental impacts. The production of fluoropolymer‐ and PET‐based backsheets cause substantial environmental impacts, especially regarding climate change and ozone depletion. This conclusion is corroborated by recent literature data. Regarding the EoL phase, it was shown from a theoretical assessment that pyrolysis of the spent backsheets potentially leads to much lower global warming potential (GWP) when compared to incineration, especially for the PO‐based backsheets. Incineration of the shredded and solid backsheet material causes direct emissions of CO2 with a limited heat recovery potential only. Deploying pyrolysis for spent PO‐based backsheets significantly improves their life‐time GWP per kWh produced. Pyrolysis offers the possibility to recover a large part of the PO as an usable pyrolysis oil that might serve as feedstock for chemicals or as transportable liquid fuel for the generation of process heat in recovery boilers, thereby avoiding the use of new fossil resources. EoL pyrolysis (or incineration) of fluoropolymer‐based backsheets is problematic due to the presence of fluorinated hydrocarbons, leading to corrosive and/or toxic products.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average