Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Photovol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Photovoltaics Research and Applications
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ktisis
Article . 2013
Data sources: Ktisis
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FPGA‐based implementation of a real time photovoltaic module simulator

Authors: Mekki, Hamza; Mellit, Adel; Kalogirou, Soteris A.; Messai, Adnane; Furlan, G.;

FPGA‐based implementation of a real time photovoltaic module simulator

Abstract

AbstractAn implementation of an intelligent photovoltaic module on reconfigurable Field Programmable Gate Array (FPGA) is described in this paper. An experimental database of meteorological data (irradiation and temperature) and output electrical generation data of a Photovoltaic (PV) module (current and voltage) under variable climate condition is used in this study. Initially, an Artificial Neural Network (ANN) is developed under Matlab/Similuk, environment for modeling the PV module. The inputs of the ANN–PV module are the global solar irradiation and temperature while the outputs are the current and voltage generated from the PV‐module. Subsequently, the optimal configuration of the ANN model (ANN–PV module) is written and simulated under the Very High Description Language (VHDL) and ModelSim. The synthesized architecture by ModelSim is then implemented on an FPGA device. The designed MLP‐photovoltaic module permits the evaluation of performance of the PV module using only environmental parameters and involves less computational effort. The device can also be used for predicting the output electrical energy from the PV module and for a real time simulation in specific climatic conditions. Copyright © 2010 John Wiley & Sons, Ltd.

Country
Cyprus
Keywords

VDHL, Environmental Engineering, Photovoltaic module, Engineering and Technology, Prediction, Neural networks, FPGA, Simulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%