Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plants, People, Plan...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plants, People, Planet
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plants, People, Planet
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using local knowledge to reconstruct climate‐mediated changes in disease dynamics and yield—A case study on Arabica coffee in its native range

Authors: Biruk Ayalew; Kristoffer Hylander; Lowe Börjeson; Girma Adugna; Dinkissa Beche; Francesco Zignol; Ayco J. M. Tack;

Using local knowledge to reconstruct climate‐mediated changes in disease dynamics and yield—A case study on Arabica coffee in its native range

Abstract

Societal Impact StatementAdapting agriculture to climate change requires an understanding of the long‐term relationship between climate, disease dynamics, and yield. While some countries have monitored major crop diseases for decades or centuries, comparable data is scarce or non‐existent for many countries that are most vulnerable to climate change. For this, a novel approach was developed to reconstruct climate‐mediated changes in disease dynamics and yield. Here, a case study on Arabica coffee in its area of origin demonstrates how to combine local knowledge, climate data, and spatial field surveys to reconstruct disease and yield time series and to postulate and test hypotheses for climate–disease–yield relationships.Summary While some countries have monitored crop diseases for several decades or centuries, other countries have very limited historical time series. In such areas, we lack data on long‐term patterns and drivers of disease dynamics, which is important for developing climate‐resilient disease management strategies. We adopted a novel approach, combining local knowledge, climate data, and spatial field surveys to understand long‐term climate‐mediated changes in disease dynamics in coffee agroforestry systems. For this, we worked with 58 smallholder farmers in southwestern Ethiopia, the area of origin of Arabica coffee. The majority of farmers perceived an increase in coffee leaf rust and a decrease in coffee berry disease, whereas perceptions of changes in coffee wilt disease and Armillaria root rot were highly variable among farmers. Climate data supported farmers' understanding of the climatic drivers (increased temperature, less rainy days) of these changes. Temporal disease‐climate relationships were matched by spatial disease‐climate relationships, as expected with space‐for‐time substitution. Understanding long‐term disease dynamics and yield is crucial to adapt disease management to climate change. Our study demonstrates how to combine local knowledge, climate data and spatial field surveys to reconstruct disease time series and postulate hypotheses for disease‐climate relationships in areas where few long‐term time series exist.

Keywords

coffee berry disease, Botany, coffee wilt disease, Environmental sciences, local knowledge, climate change, QK1-989, coffee leaf rust, GE1-350, disease dynamics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities
Energy Research