Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2020
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Quarterly Journal of the Royal Meteorological Society
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of submeso motions on scalar oscillations and surface energy balance

Authors: Otávio C. Acevedo; Gervásio Annes Degrazia; Daniela Cava; Luca Mortarini; Luca Mortarini; Michel Stefanello; Domenico Anfossi; +1 Authors

Influence of submeso motions on scalar oscillations and surface energy balance

Abstract

AbstractThe presence of wave‐like structures in the planetary boundary layer and their influence on the scalar fluxes and on the surface energy balance were investigated analyzing one year of continuous measurements collected in southern Brazil. Submeso oscillating patterns in the wind velocity components, temperature and scalar (CO, HO) concentrations were isolated using their auto‐correlation functions. The analysis showed that low wind speeds are necessary to trigger wavy motions. During night‐time, in the presence of large vertical temperature gradients, horizontal meandering and internal gravity waves are dominant features of the stable boundary layer. Furthermore, a significant number of meandering cases were identified also during daytime in neutral conditions associated with low values of net radiation. One case‐study showed how, during daytime, the wave‐like patterns may be triggered by variations in the net radiation. Spectral analysis on the whole dataset showed that oscillations in the wind velocity and temperature field are frequently associated with CO and HO wavy patterns with similar time‐scales. These non‐turbulent oscillations produce unpredictable large‐scale contributions to vertical fluxes of temperature and scalar concentrations. The energy budget analysis showed how the choice of a proper averaging time filters out these contributions and improves the energy budget closure, as well as the estimation of the net ecosystem exchange. The results confirm the influence of submeso motions in scalar dispersion, flux patterns and surface energy balance during low wind speed conditions and stable stratification.

Country
Italy
Keywords

Horizontal meandering 1, Gravity waves 2, turbulent fluxes 3, surface energy balance 4, low-wind 5, surface energy balance, internal g, horizontal meandering, turbulent fluxes, low-wind conditions, very stable boundary layer, Boundary layer; Sub-mesoscale; Topography effect; Wavelet, wave-turbulence interaction, internal gravity waves

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Green