Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Rapid Communications...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Rapid Communications in Mass Spectrometry
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Belowground fate of 15N injected into sweetgum trees (Liquidambar styraciflua) at the ORNL FACE Experiment

Authors: D. J. Brice; Charles T. Garten;

Belowground fate of 15N injected into sweetgum trees (Liquidambar styraciflua) at the ORNL FACE Experiment

Abstract

AbstractNitrogen (N) cycling can be an important constraint on forest ecosystem response to elevated atmospheric CO2. Our objective was to trace the movement of 15N, injected into tree sap, to labile and stable forms of soil organic matter derived partly from the turnover of tree roots under elevated (545 ppm) and ambient (394 ppm) atmospheric CO2 concentrations at the Oak Ridge National Laboratory (ORNL) FACE (Free‐Air Carbon Dioxide Enrichment) Experiment. Twenty‐four sweetgum trees, divided equally between CO2 treatments, were injected with 3.2 g 15N‐ammonium sulfate (99 atom %), and soil samples were collected beneath the trees over a period of 89 weeks. For 16 cm deep soil samples collected beneath the study trees, there was 28% more fine root (less than or equal to 2 mm diameter) biomass under elevated CO2 (P = 0.001), but no significant treatment effect on the amounts of necromass, coarse root biomass, or on the N concentrations in tree roots and necromass. Nitrogen‐15 moved quickly into roots from the stem injection site and the 15N content of roots, necromass, and labile organic matter (i.e. particulate organic matter, POM) increased over time. At 89 weeks post‐injection, approximately 76% of the necromass 15N originated from fine root turnover. Nitrogen‐15 in POM had a relatively long turnover time (47 weeks) compared with 15N in roots (16 to 22 weeks). Over the 1.7 year period of the study, 15N moved from roots into slower cycling POM and the disparity in turnover times between root N and N in POM could impose progressive limitations on soil N availability with stand maturation irrespective of atmospheric CO2, especially if the release of N through the decomposition of POM is essential to sustain forest net primary production. Published in 2009 by John Wiley & Sons, Ltd.

Related Organizations
Keywords

Nitrogen Isotopes, Carbon Dioxide, Trees, Soil, Liquidambar, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%