Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Rapid Communications...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Rapid Communications in Mass Spectrometry
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

δ15N of soil N and plants in a N‐saturated, subtropical forest of southern China

Authors: Wei-Dong Zhang; Xiankai Lu; W. Saito; Kazuo Isobe; Muneoki Yoh; Yu Takebayashi; Lei Liu; +7 Authors

δ15N of soil N and plants in a N‐saturated, subtropical forest of southern China

Abstract

AbstractWe investigated the δ15N profile of N (extractable NH, NO, and organic N (EON)) in the soil of a N‐saturated subtropical forest. The order of δ15N in the soil was EON > NH > NO. Although the δ15N of EON had been expected to be similar to that of bulk soil N, it was higher than that of bulk soil N by 5‰. The difference in δ15N between bulk soil N and EON (Δ15Nbulk‐EON) was correlated significantly with the soil C/N ratio. This correlation implies that carbon availability, which determines the balance between N assimilation and dissimilation of soil microbes, is responsible for the high δ15N of EON, as in the case of soil microbial biomass δ15N. A thorough δ15N survey of available N (NH, NO, and EON) in the soil profiles from the organic layer to 100 cm depth revealed that the δ15N of the available N forms did not fully overlap with the δ15N of plants. This mismatch in δ15N between that of available N and that of plants reflects apparent isotopic fractionation during N uptake by plants, emphasizing the high N availability in this N‐saturated forest. Copyright © 2010 John Wiley & Sons, Ltd.

Related Organizations
Keywords

Analysis of Variance, China, Tropical Climate, Nitrates, Nitrogen Isotopes, Plants, Carbon, Mass Spectrometry, Potassium Chloride, Plant Leaves, Quaternary Ammonium Compounds, Soil, Linear Models, Biomass, Nitrogen Compounds

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%