
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cobalt Sulfide as Counter Electrode in p-Type Dye-Sensitized Solar Cells

handle: 11573/877209 , 11449/178525
We proposed a novel application of cobalt sulfide (CoS) in the configuration of transparent thin film as anode in p-type dye-sensitized solar cell (p-DSC). The anodes here considered have been prepared using a water-based method that is suitable for the large scale production of large-area electrodes. The photoactive cathodes of the p-DSC were mesoporous nickel oxide (NiO) thin films deposited via rapid discharge sintering. The NiO electrodes were sensitized with the benchmark dye erythrosine B (ERY), while the couple I−/I3− was the redox mediator. The CoS anodes showed higher electrocatalytic efficiency in comparison with the commonly used platinized Fluorine-doped Tin Oxide (Pt-FTO). This was determined by means of electrochemical impedance spectroscopy of CoS based dummy cells, with CoS showing a lower charge-transfer resistance with respect to Pt-FTO. The overall conversion efficiency of the p-DSC employing ERY-sensitized NiO as photoactive cathode and CoS anode was 0.026 %, a value very close to that obtained with Pt-FTO anodes (0.030 %). The external quantum efficiency spectra of the p-DSCs with CoS anodes were similar to those obtained with Pt-FTO anodes under illumination with AM 1.5 solar simulator.
- Sapienza University of Rome Italy
- Roma Tre University Italy
- United States Department of Energy United States
- University College Dublin Ireland
- United States Department of Energy United States
Cobalt sulfide, P-type solar cell, solar energy, cobalt sulfide; dye sensitized solar cells; solar energy, 500, Dye Sensitized Solar Cells, Counter electrode
Cobalt sulfide, P-type solar cell, solar energy, cobalt sulfide; dye sensitized solar cells; solar energy, 500, Dye Sensitized Solar Cells, Counter electrode
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
