
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Acetaldehyde elicits ERK phosphorylation in the rat nucleus accumbens and extended amygdala

Recent advances suggest that acetaldehyde mediates some of the neurobiological properties of ethanol. In a recent study, we have shown that ethanol elicits the phosphorylation of extracellular signal-regulated kinase (pERK) in the nucleus accumbens and extended amygdala, via a dopamine D(1) receptor-mediated mechanism. The aim of this study was to determine whether acetaldehyde and ethanol-derived acetaldehyde elicit the activation of ERK in the nucleus accumbens and extended amygdala. The effects of acetaldehyde (10 and 20 mg/kg) and ethanol (1 g/kg), administered to rats intragastrically, were assessed by pERK peroxidase immunohistochemistry. To establish the role of ethanol-derived acetaldehyde, the alcohol dehydrogenase inhibitor, 4-methylpyrazole (90 mg/kg), and the acetaldehyde-sequestering agent, D-penicillamine (50 mg/kg), were administered before ethanol. Acetaldehyde increased pERK immunoreactivity in the nucleus accumbens and extended amygdala. Inhibition of ethanol metabolism and sequestration of newly synthesized acetaldehyde completely prevented ERK activation by ethanol. In addition, to establish the role of D(1) receptors stimulation in acetaldehyde-elicited ERK phosphorylation, we studied the effect of the D(1) receptor antagonist, SCH 39166. Pretreatment with the D(1) receptor antagonist (50 μg/kg) fully prevented acetaldehyde-elicited ERK activation. Overall, these results indicate that ethanol activates ERK by means of its metabolic conversion into acetaldehyde and strengthen the view that acetaldehyde is a centrally acting compound with a pharmacological profile similar to ethanol.
- University of Cagliari Italy
Male, Ethanol, Central Nervous System Depressants, Acetaldehyde, Amygdala, Nucleus Accumbens, Rats, Rats, Sprague-Dawley, Acetaldehyde; Alcohol dehydrogenase; Ethanol; Extracellular signal regulated kinase; Extended amygdala; Nucleus accumbens, Alcohol-Induced Disorders, Nervous System, Animals, Phosphorylation, Extracellular Signal-Regulated MAP Kinases
Male, Ethanol, Central Nervous System Depressants, Acetaldehyde, Amygdala, Nucleus Accumbens, Rats, Rats, Sprague-Dawley, Acetaldehyde; Alcohol dehydrogenase; Ethanol; Extracellular signal regulated kinase; Extended amygdala; Nucleus accumbens, Alcohol-Induced Disorders, Nervous System, Animals, Phosphorylation, Extracellular Signal-Regulated MAP Kinases
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
