Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wiley Interdisciplin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wiley Interdisciplinary Reviews Climate Change
Article . 2016 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wiley Interdisciplinary Reviews Climate Change
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bayesian estimation of climate sensitivity using observationally constrained simple climate models

Authors: Roger W. Bodman; Roger N. Jones;

Bayesian estimation of climate sensitivity using observationally constrained simple climate models

Abstract

One‐dimensional simple climate models (SCMs) play an important role within a hierarchy of climate models. They have largely been used to investigate alternative emission scenarios and estimate global‐mean temperature change. This role has expanded through the incorporation of techniques that include Monte Carlo methods and Bayesian statistics, adding the ability to generate probabilistic temperature change projections and diagnose key uncertainties, including equilibrium climate sensitivity (ECS). The latter is the most influential parameter within this class of models where it is ordinarily prescribed, rather than being an emergent property. A series of recent papers based on SCMs and Bayesian statistical methods have endeavored to estimate ECS by using instrumental observations and results from other more complex models to constrain the parameter space. Distributions for ECS depend on a variety of parameters, such as ocean diffusivity and aerosol forcing, so that conclusions cannot be drawn without reference to the joint parameter distribution. Results are affected by the treatment of natural variability, observational uncertainty, and the parameter space being explored. In addition, the highly simplified nature of SCMs means that they contain a number of implicit assumptions that do not necessarily reflect adequately the true nature of Earth's nonlinear quasi‐chaotic climate system. Differences in the best estimate and range for ECS may be partly due to variations in the structure of the SCMs reviewed in this study, along with the selection of data and the calibration details, including the choice of priors. Further investigations and model intercomparisons are needed to clarify these issues. WIREs Clim Change 2016, 7:461–473. doi: 10.1002/wcc.397This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models

Country
Australia
Related Organizations
Keywords

Monte Carlo methods, Bayesian statistics, College of Business, climate change, temperature change, 0502 Environmental Science and Management

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
hybrid