
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of the influence of climate change on the fatigue lifetime of offshore wind turbines using imprecise probabilities

doi: 10.1002/we.2572 , 10.15488/10914
AbstractWhen discussing the connection of wind energy and climate change, normally, the potential of wind energy to reduce green house gas emissions is emphasised. Hence, effects of wind energy on climate change are analysed. However, what about the other direction? What is the impact of climate change on wind energy? Recently, the effect of a reversal in global terrestrial stilling,that is, an increase in global wind speeds in the last decade, on the wind energy production has been analysed. Certainly, knowledge about potential changes in energy production is essential to plan future energy supply. Nonetheless, at least similarly important is the effect on loads acting on wind turbines. Increasing loads due to higher wind speeds might reduce wind turbine lifetimes and yield higher costs. Moreover, especially for already existing turbines, it might even affect the structural reliability. Since the impact of climate change on wind turbine loads is largely unknown, it is studied in this work in more detail. For this purpose, different existing models for predicted changes in wind speed and air temperature and their uncertainties are used to forecast the environmental conditions an exemplary offshore wind turbine is exposed to. Subsequently, for this turbine, the lifetime fatigue damages are calculated for different prediction models. It is shown that the expected changes in lifetime fatigue damages are present but relatively small compared to other uncertainties in the fatigue damage calculation.
- University of Hannover Germany
green house, Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau, climate change, wind energy, gas emissions
green house, Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau, climate change, wind energy, gas emissions
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
