Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MediaTUMarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MediaTUM
Article . 2014
Data sources: MediaTUM
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Wiley Interdisciplinary Reviews Energy and Environment
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of synthetic natural gas production pathways for the storage of renewable energy

Authors: Hartmut Spliethoff; Matthias Gaderer; Sebastian Fendt; A. Buttler;

Comparison of synthetic natural gas production pathways for the storage of renewable energy

Abstract

The production of synthetic natural gas (SNG) to store renewable energy in a chemical energy carrier can be accomplished basically through three main production pathways: the biochemical (biogas upgrade), thermochemical (gasification and synthesis gas upgrade) and electrochemical (‘Power‐to‐Gas’) pathway. The technologies applied in these concepts are described and the three pathways are compared in terms of their state of development, efficiencies, and economics. While the biochemical pathway is already established on a commercial scale, the thermochemical and electrochemical routes are still in the pilot‐plant phase. Biochemical production ofSNGreaches efficiencies in the range of 55–57% but with a potential of above 80%. In comparison, higher efficiencies of up to 70% for the thermochemical pathway are currently expected, with future improvement up to 75%. Electrochemical production achieves efficiencies in the range of 54–60% with expected potential up to 78%. Therefore at the moment the highest efficiencies are given for the thermochemical pathway followed by the electrochemical and biochemical pathways. Economic evaluation is done by comparing specific production costs as well as mean specific investment costs forSNG. Generally speaking, specific production and investment costs decrease with time horizon and increasing scale of the plant. Specific production cost levels in €ct/kWhSNGvary between 5.9 and 13.7 (biochemical), 5.6 and 37 (thermochemical), and 8.2 and 93 (electrochemical). Thus, none of the concepts can compete with today's natural gas prices, but all options are able to provide valuable assistance for a sustainable transition of the energy system.WIREs Energy Environ2016, 5:327–350. doi: 10.1002/wene.189This article is categorized under:Bioenergy > Economics and PolicyEnergy Systems Economics > Systems and Infrastructure

Related Organizations
Keywords

ddc: ddc:

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Green