Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HSP70 Induction in the Brain Following Ethanol Administration in the Rat: Regulation by Glutathione Redox State

Authors: CALABRESE, Vittorio; TESTA D; RAVAGNA A; BATES T. E; A. M. GIUFFRIDA STELLA;

HSP70 Induction in the Brain Following Ethanol Administration in the Rat: Regulation by Glutathione Redox State

Abstract

Changes in glutathione (GSH) and glutathione disulfide (GSSG) levels and/or redox status have been suggested to mediate the induction of heat shock proteins (HSPs) that follows exposure to oxidizing agents such as ethanol. Here we report the effects of ethanol administration to rats at intracellular levels of GSH, GSSG, HSP70, and protein carbonyls in brain and liver. Following 7 days of ethanol administration, there was a significant decrease in GSH, a significant induction of HSP70, and a significant increase in protein carbonyls in all brain regions studied and in liver. In cortex, striatum, and hippocampus there was a significant correlation between (a) the decrease in GSH, (b) the increase in GSSG, and (c) the decrease in GSH/GSSG ratio and HSP70 levels induced in response to ethanol. These data support the hypothesis that a redox mechanism may be involved in the heat-shock signal pathway responsible for HSP70 induction in the brain.

Countries
United Kingdom, Italy
Keywords

Male, 610, A100 - Pre-clinical medicine, B220 - Toxicology, GSH, HSP 70, Animals, HSP70 Heat-Shock Proteins, B131 - Cellular pathology, glutathione, Rats, Wistar, Ethanol, B131 Cellular Pathology, 500, Brain, Glutathione, Rats, B140 - Neuroscience, redox, B220 Toxicology, A100 Pre-clinical Medicine, ethanol, B140 Neuroscience, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
Green