
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Towards Prospective Life Cycle Assessment: How to Identify Key Parameters Inducing Most Uncertainties in the Future? Application to Photovoltaic Systems Installed in Spain
Prospective Life Cycle Assessment (LCA) is a relevant approach to assess the environmental performance of future energy pathways. Amongst different types of prospective scenarios, cornerstone scenarios meant for complex systems and long-term approaches, are of interest to assess such performance. They rely on different types of long-term projections, such as projections of technological evolutions and of energy resources. In most studies, scenarios are defined with single values for each parameter, and environmental impacts are assessed in a deterministic way. Inherent uncertainties related to these prospective assumptions are not considered and prospective LCA uncertainties are thus not addressed. In this paper we describe a methodology to account for these uncertainties and to identify the parameters inducing most of the uncertainties in the prospective LCA results. We apply this approach to prospective LCAs of photovoltaic-based electricity generation systems.
[ SPI.ENERG ] Engineering Sciences [physics]/domain_spi.energ, Life Cycle Assessment, [SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ, Photovoltaic Systems, [SPI.ENERG] Engineering Sciences/domain_spi.energ
[ SPI.ENERG ] Engineering Sciences [physics]/domain_spi.energ, Life Cycle Assessment, [SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ, Photovoltaic Systems, [SPI.ENERG] Engineering Sciences/domain_spi.energ
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
