Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Part of book or chapter of book . 2011
Data sources: IRIS Cnr
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Climate Change Effects on Floods Frequency Through a Continuous Hydrological Modelling

Authors: Brocca Luca; Camici Stefania; Tarpanelli Angelica; Melone Florisa; Moramarco Tommaso;

Analysis of Climate Change Effects on Floods Frequency Through a Continuous Hydrological Modelling

Abstract

The relationship between climate change and floods frequency is of great interest for addressing the complex analysis on the hydrologic cycle evolution. In this context, this study aims to assess, by a preliminary investigation, the climate change effects on the floods frequency in several basins of the upper Tiber River, whose area is ranging from 100 to 300 km2. For that, a continuous hydrological model coupled with a stochastic generation of rainfall and temperature has been used. Therefore, a long synthetic series of discharge were generated from which the annual maximum discharges were extracted and, hence, the flood frequency curves were defined. For the stochastic generation of precipitation, the Neyman-Scott Rectangular Pulse model was used, while for the synthetic generation of temperature, an ARIMA model with fractional differentiation was applied. The time series of discharge was assessed by applying a continuous hydrological model developed ad hoc for the investigated basins. The model structure was inferred by investigating the effects of antecedent wetness conditions on the outlet response of several experimental basins located in Central Italy. The analysis proposed here compares the actual time series of precipitation and temperature and the perturbed ones by assuming two different future scenarios obtained by the Global Circulation Model HadCM3. Results showed that geo-morphological and land-use characteristics of basins might have a paramount role in the changing of floods frequency.

Country
Italy
Keywords

Continuous hydrological modelling, Climate change, Floods frequency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average