Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Psychopharmacologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Psychopharmacology
Article . 1987 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rectal and brain temperatures in ethanol intoxicated mice

Authors: M. Bejanian; Deborah A. Finn; Ronald L. Alkana; P.J. Syapin;

Rectal and brain temperatures in ethanol intoxicated mice

Abstract

The present study tested the assumption that deep rectal temperature reflects brain temperature in ethanol-intoxicated mice exposed to a range of ambient temperatures. Adult C57BL/6J mice were injected IP with one of three hypnotic doses of ethanol (3.2, 3.6, or 4.0 g/kg, 20% w/v) or with normal saline and were exposed to ambient temperatures of 15, 22, 32, or 34 degrees C. Thirty minutes post-injection, the mice were killed by cervical dislocation, decapitated and their rectal and brain temperatures were recorded simultaneously. Rectal and brain temperatures in the intoxicated mice increased significantly as the ambient temperature increased and were highly correlated and linearly related with each other. Although correlated, brain and rectal temperatures in these mice did not change in parallel, with brain temperatures increasing less rapidly than rectal temperatures. Additional studies indicated that similar relationships (correlated, but non-parallel) exist between the brain and rectal temperatures at 60, 120, and 180 min after injection of 3.6 g/kg ethanol. These findings suggest that rectal temperature can be used to quantify brain temperature in intoxicated mice, and extend to intoxicated animals evidence that brain temperature is controlled independently from rectal temperature.

Related Organizations
Keywords

Male, Time Factors, Dose-Response Relationship, Drug, Ethanol, Brain, Mice, Inbred C57BL, Mice, Animals, Sleep Stages, Arousal, Body Temperature Regulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average