Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microbial Ecologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microbial Ecology
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long-term Effect of Municipal Solid Waste Amendment on Microbial Abundance and Humus-associated Enzyme Activities Under Semiarid Conditions

Authors: Ellen Kandeler; Felipe Bastida; Teresa Hernández; Carlos García;

Long-term Effect of Municipal Solid Waste Amendment on Microbial Abundance and Humus-associated Enzyme Activities Under Semiarid Conditions

Abstract

Microbial ecology is the key to understanding the function of soil biota for organic matter cycling after a single amendment of organic waste in semiarid soils. Therefore, in this paper, the long-term effect (17 years) of adding different doses of a solid municipal waste to an arid soil on humus-enzyme complexes, a very stable and long-lasting fraction of soil enzymes, as well as on microbial and plant abundance, was studied. Humic substances were extracted by 0.1 M pH 7 sodium pyrophosphate from soil samples collected in experimental plots amended with different doses of a solid municipal waste (0, 65, 130, 195, and 260 t/ha) 17 years before. The activity of different hydrolases related with the C (beta-glucosidase), N (urease), and P (alkaline phosphatase) cycles and with the formation of humic substances (o-diphenol oxidase) were determined in this extract. The density and diversity of plant cover in the plots, as well as the fungal and bacterial biomass (by analyzing phopholipid fatty acids) were also determined. In general, the amended plots showed greater humic substance-related enzymatic activity than the unamended plots. This activity increased with the dose but only up to a certain level, above which it leveled off or even diminished. Plant diversity and cover density followed the same trend. Fungal and bacterial biomass also benefited in a dose-dependent manner. Different signature molecules representing gram+ and gram- bacteria, and those corresponding to monounsaturated and saturated fatty acids showed a similar behavior. The results demonstrate that organic amendment had a noticeable long-term effect on the vegetal development, humic substances-related enzyme activity and on the development of bacteria and fungi in semiarid conditions.

Keywords

Time Factors, Soil, Ergosterol, Biomass, Humic Substances, Phospholipids, Soil Microbiology, Analysis of Variance, Bacteria, Fatty Acids, Fungi, Enzymes, Refuse Disposal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    100
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
100
Top 1%
Top 10%
Top 10%