Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Microbiology and Biotechnology
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol

Authors: Svetlana V. Kamzolova; M.N. Kondrashova; Igor G. Morgunov; Nadezhda I. Fedotcheva; Tatiana V. Finogenova; Alsu I. Yusupova; Natalia G. Vinokurova;

Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol

Abstract

A new two-step process of production of succinic acid (SA) has been developed, which includes the microbial synthesis of alpha-ketoglutaric acid by the yeast Yarrowia lipolytica (step 1) and subsequent oxidation of the acid by hydrogen peroxide to SA (step 2). The maximum concentration of SA and its yield were found to be 63.4 g l(-1) and 58% of the ethanol consumed, respectively. The purity of the SA isolated from the culture liquid filtrate reached 100%. The yield of SA was as high as 82% of its amount in the culture liquid filtrate. The quality of the SA produced by the invented method meets the biochemical grade definitions, as is evident from the respiratory and other relevant parameters of rat liver mitochondria upon the oxidation of this SA.

Keywords

Ethanol, Succinic Acid, Yarrowia, Hydrogen Peroxide, Mitochondria, Rats, Animals, Ketoglutaric Acids, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research