Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Microbiology and Biotechnology
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

At-line determination of spore inoculum quality in Penicillium chrysogenum bioprocesses

Authors: Christoph Herwig; Daniela Ehgartner; Lukas Neutsch;

At-line determination of spore inoculum quality in Penicillium chrysogenum bioprocesses

Abstract

Spore inoculum quality in filamentous bioprocesses is a critical parameter influencing pellet morphology and, consequently, process performance. It is essential to determine the concentration of viable spores before inoculation, to implement quality control and decrease batch-to-batch variability. The ability to assess the spore physiologic status with close-to-real time resolution would offer interesting perspectives enhanced process analytical technology (PAT) and quality by design (QbD) strategies. Up to now, the parameters contributing to spore inoculum quality are not clearly defined. The state-of-the-art method to investigate this variable is colony-forming unit (CFU) determination, which assesses the number of growing spores. This procedure is tedious, associated with significant inherent bias, and not applicable in real time.Here, a novel method is presented, based on the combination of viability staining (propidium iodide and fluorescein diacetate) and large-particle flow cytometry. It is compatible with the complex medium background often observed in filamentous bioprocesses and allows for a classification of the spores into different subpopulations. Next to viable spores with intact growth potential, dormant or inactive as well as physiologically compromised cells are accurately determined. Hence, a more holistic few on spore inoculum quality and early-phase biomass composition is provided, offering enhanced information content.In an industrially relevant model bioprocess, good correlation to CFU counts was found. Morphological parameters (e.g. spore swelling) that are not accessible via standard monitoring tools were followed over the initial process phase with close temporal resolution.

Related Organizations
Keywords

Microbial Viability, Stem Cells, Colony Count, Microbial, Biomass, Agricultural Inoculants, Penicillium chrysogenum, Spores, Fungal, Flow Cytometry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Related to Research communities
Energy Research