
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High-rate nitrogen removal from waste brine by marine anammox bacteria in a pilot-scale UASB reactor

pmid: 29204898
The goal of this study was to develop a startup strategy for a high-rate anaerobic ammonium oxidation (anammox) reactor to treat waste brine with high concentrations of ammonium from a natural gas plant. An upflow anaerobic sludge blanket (UASB) anammox reactor with an effective volume of 294 L was fed continuously with waste brine with a salinity of 3% and a NH4+ concentration of 180 mg-N/L, as well as a NaNO2 solution. By inoculating a methanogenic granular biomass as a biomass carrier, the reactor attained the maximum volumetric nitrogen removal rate (NRR) of 10.7 kg-N/m3/day on day 209, which was 1.7 times higher than the highest reported NRR for wastewater of comparable salinity. High-throughput sequencing of 16S rRNA gene amplicons revealed that Candidatus Scalindua wagneri was enriched successfully in granules in the UASB, and it replaced Methanosaeta and became dominant in the granule. The inhibitory effect of NO2- on the anammox reaction in the granules was assessed by a 15N tracer method, and the results showed that anammox activity was maintained at 60% after exposure to 300 mg-N/L of NO2- for 24 h. Compared with previous studies of the susceptibilities of Candidatus Brocadia and Candidatus Kuenenia to NO2-, the enriched marine anammox bacteria were proven to have comparable or even higher tolerances for high NO2- concentrations after a long exposure.
- Kurita Water Industries (Japan) Japan
- Chinese Academy of Sciences China (People's Republic of)
- Tokyo University of Agriculture and Technology Japan
- National Institute of Advanced Industrial Science and Technology Japan
- Kurita Water Industries (Japan) Japan
Nitrogen, Pilot Projects, Wastewater, Waste Disposal, Fluid, Water Purification, Bioreactors, Ammonium Compounds, Anaerobiosis, Biomass, Bacteria, Sewage, Denitrification, Salts, Oxidation-Reduction
Nitrogen, Pilot Projects, Wastewater, Waste Disposal, Fluid, Water Purification, Bioreactors, Ammonium Compounds, Anaerobiosis, Biomass, Bacteria, Sewage, Denitrification, Salts, Oxidation-Reduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
