
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Valorisation of the invasive alga Rugulopteryx okamurae through the production of monomeric sugars

Abstract Rugulopteryx okamurae is an invasive brown alga causing severe environmental and economic problems on the western Mediterranean coasts. Thus, in addition to the difficulties caused to the fishing and tourism sectors, there is a need to manage its accumulation on the beaches. This work aims to valorise this waste by using it as raw material for producing monosaccharides through a two-stage sequential process. These sugars could be used for different fermentative processes to obtain high-value-added bioproducts. In this work, biological pretreatment of the previously conditioned seaweed with the fungus Aspergillus awamori in solid-state fermentation (SSF), followed by enzymatic hydrolysis with a commercial enzyme cocktail, was performed. The effect of the extension of the biological pretreatment (2, 5, 8 and 12 days) on the subsequent release of total reducing sugars (TRS) in the enzymatic hydrolysis stage was studied. To analyse this effect, experimental data of TRS produced along the hydrolysis were fitted to simple first-order kinetics. Also, the secretion of cellulase and alginate lyase by the fungus, along with the biological pretreatment, was determined. The results suggest that 5 days of biological pretreatment of the macroalgae with A. awamori followed by enzymatic saccharification for 24 h with Cellic CTec2® (112 FP units/g of dry biomass) are the best conditions tested, allowing the production of around 240 g of TRS per kg of dried biomass. The main sugars obtained were glucose (95.8 %) and mannitol (1.5 %), followed by galactose (1 %), arabinose (0.9 %) and fucose (0.5 %). Key points • Five-day SSF by A. awamori was the best condition to pretreat R. okamurae. • Five-day SSF was optimal for alginate lyase production (1.63 ±0.011 IU/g biomass). • A maximum yield of 239 mg TRS/g biomass was obtained (with 95.8 % glucose). Graphical Abstract
- Cadi Ayyad University Morocco
- University of Cádiz Spain
Phaeophyceae, Hydrolysis, Rugulopteryx okamurae, Biological pretreatment, Seaweed, Invasive brown macroalgae, Environmental Biotechnology, Glucose, Enzymatic hydrolysis, Cellulase, Solid-state fermentation, Aspergillus awamori, Fermentation, Biomass, Sugars
Phaeophyceae, Hydrolysis, Rugulopteryx okamurae, Biological pretreatment, Seaweed, Invasive brown macroalgae, Environmental Biotechnology, Glucose, Enzymatic hydrolysis, Cellulase, Solid-state fermentation, Aspergillus awamori, Fermentation, Biomass, Sugars
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
