
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Human and climatic impact on mires: a case study of Les Amburnex mire, Swiss Jura Mountains

Modern period long-term human and climatic impacts on a small mire in the Jura Mountains were assessed using testate amoebae, macrofossils and pollen. This multiproxy data analysis permitted detailed interpretations of local and regional environmental change and thus a partial disentanglement of the different variables that influence long-term mire development. From the Middle Ages until a.d. 1700 the mire vegetation was characterised by ferns, Caltha and Vaccinium, but then abruptly changed into the modern vegetation characterised by Cyperaceae, Potentilla and Sphagnum. The cause for this change was most probably deforestation, possibly enhanced by climatic cooling. A decrease in trampling intensity by domestic animals from a.d. 1950 onwards allowed Sphagnum growth and climatic warming in the a.d. 1980s and 1990s may have been responsible for considerable changes in the species composition. The mire investigated is an example of the rapid changes in mire vegetation and peat development that occurred throughout the central European mountain region during the past centuries as a result of changing climate and land-use practice. These processes are still active today and will determine the future development of high-altitude mires.
- University of Bern Switzerland
- RERO - Library Network of Western Switzerland Switzerland
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
- Adam Mickiewicz University in Poznań Poland
- RERO - Library Network of Western Switzerland Switzerland
Pollen analysis, Human impact, 580 Plants (Botany), Jura Mountains, Climate change, Testate amoebae, Macrofossils
Pollen analysis, Human impact, 580 Plants (Botany), Jura Mountains, Climate change, Testate amoebae, Macrofossils
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
