Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Horizon / Pleins textes
Other literature type . 1998
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biology and Fertility of Soils
Article . 1998 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Digital.CSIC
Article . 1998 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Earthworm communities in native savannas and man-made pastures of the Eastern Plains of Colombia

Authors: Jiménez Jaén, J.J.; Moreno, Alonso; Decaëns, Thibaud; Lavelle, Patrick M.; Fisher, Myles J.; Thomas, Richard J.;

Earthworm communities in native savannas and man-made pastures of the Eastern Plains of Colombia

Abstract

34 páginas, 4 figuras, 8 tablas. The structure and seasonal changes of earthworm communities were evaluated in a natural savanna and in a improved grass-legume pasture in a Colombian oxisol over a period of 18 months. One plot of 90×90 m was isolated in each of the systems and each month five samples of 1 m2×0.5 m and ten of 20×20×20 cm were randomly selected from a stratified block design. Species richness was similar in the two evaluated plots (seven species), whereas diversity measured by the index, H (Shannon and Weaver 1949) was clearly different, i.e. H=2.89 in natural savanna and H=1.29 in pasture. This is explained by differences in earthworm community structure. The average annual density in the savanna was 49.8, ranging from 10.8 to 135.8 individuals (ind) m–2, and biomass was 3.3 g m–2 (hand-sorting method), ranging from 0.9 to 11.5 g m–2. In the man-made pasture, density was 80.1 ind m–2 on average, ranging from 24 to 215.8 ind m–2 and biomass was more than tenfold higher, ranging from 29.2 to 110.4 g m–2. This was especially due to the presence of a large glossoscolecid anecic species, Martiodrilus carimaguensis Jiménez and Moreno, which has been greatly favoured by conversion of savanna to pasture. Endogeic species were dominant in the natural savanna whereas the anecic species accounted for 88% of total earthworm biomass in the pasture. Total earthworm density and biomass were significantly different in the two systems studied (t-test). The results indicate a clearly positive response of earthworm communities to improved pastures, a type of land use that is being increasingly adopted in moist neotropical savannas. This study was part of collaborative research between the STD-3 Macrofauna Project, an international programme supported by the European Community focused on the biology, ecology and possibilities of management of earthworm species present in natural and distributed ecosystems in the tropics, and the Tropical Lowlands Program at the International Center for Tropical Agriculture, CIAT (International Centre for Tropical Agriculture; Cali, Colombia). This study was supported in part by a research grant within the Macrofauna programme.We want to thank CIAT, especially all at the Tropical Lowlands Program for scientific, technical and human support. The invaluable help provided by field workers at Carimagua in this back-breaking work is undoubtedly greatly appreciated. Finally, the first author wishes to thank two anonymous referees for their helpful comments on the previous manuscript. Peer reviewed

Countries
Spain, France
Keywords

VARIATION SAISONNIERE, STRUCTURE DU PEUPLEMENT, DIVERSITE SPECIFIQUE, SAVANE, savannas, biodiversidad, oligochaeta, Abundance, Earthworm community, Biomass, ordenación de tierras, sabanas, biodiversity, Diversity, BIOMASSE, biomass, Tropical savannas, land management, PATURAGE, ferralsols, pastures, DENSITE DE POPULATION, biomasa, pastizales, ferralsoles, lumbricidae, LOMBRIC

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 39
    download downloads 124
  • 39
    views
    124
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC39124
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
66
Top 10%
Top 10%
Top 10%
39
124
Green
bronze