Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Climate Dynamicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Climate Dynamics
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A quantitative assessment of precipitation associated with the ITCZ in the CMIP5 GCM simulations

Authors: Stanfield, Ryan E.; Jiang, Jonathan H.; Dong, Xiquan; Xi, Baike; Su, Hui; Donner, Leo; Rotstayn, Leon; +3 Authors

A quantitative assessment of precipitation associated with the ITCZ in the CMIP5 GCM simulations

Abstract

According to the Intergovernmental Panel on Climate Change 5th Assessment Report, the broad-scale features of precipitation as simulated by Phase 5 of the Coupled Model Intercomparison Project (CMIP5) are in modest agreement with observations, however, large systematic errors are found in the Tropics. In this study, a new algorithm has been developed to define the North Pacific Intertropical Convergence Zone (ITCZ) through several metrics, including: the centerline position of the ITCZ, the width of the ITCZ, and the magnitude of precipitation along the defined ITCZ. These metrics provide a quantitative analysis of precipitation associated with the ITCZ over the equatorial northern Pacific. Results from 29 CMIP5 Atmospheric Model Intercomparison Project (AMIP) Global Circulation Model (GCM) runs are compared with Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission (TRMM) observations. Similarities and differences between the GCM simulations and observations are analyzed with the intent of quantifying magnitude-, location-, and width-based biases within the GCMs. Comparisons show that most of the GCMs tend to simulate a stronger, wider ITCZ shifted slightly northward compared to the ITCZ in GPCP and TRMM observations. Comparisons of CMIP and AMIP simulated precipitation using like-models were found to be nearly equally distributed, with roughly half of GCMs showing an increase (decrease) in precipitation when coupled (decoupled) from their respective ocean model. Further study is warranted to understand these differences.

Country
China (People's Republic of)
Keywords

Model precipitation, GCM precipitation, 910, CMIP, AMIP, GCM, GCM bias, Global climate models, Climate change, CMIP5, ITCZ

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%