Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Climate Dynamicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Climate Dynamics
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulated austral winter response of the Hadley circulation and stationary Rossby wave propagation to a warming climate

Authors: Tércio Ambrizzi; Terence J. O’Kane; Jorgen S. Frederiksen; Ana Carolina Vasques Freitas; Ana Carolina Vasques Freitas;

Simulated austral winter response of the Hadley circulation and stationary Rossby wave propagation to a warming climate

Abstract

Ensemble simulations, using both coupled ocean–atmosphere (AOGCM) and atmosphere only (AGCM) general circulation models, are employed to examine the austral winter response of the Hadley circulation (HC) and stationary Rossby wave propagation (SRW) to a warming climate. Changes in the strength and width of the HC are firstly examined in a set of runs with idealized sea surface temperature (SST) perturbations as boundary conditions in the AGCM. Strong and weak SST gradient experiments (SG and WG, respectively) simulate changes in the HC intensity, whereas narrow (5°S–5°N) and wide (30°S–30°N) SST warming experiments simulate changes in the HC width. To examine the combined impact of changes in the strength and width of the HC upon SRW propagation two AOGCM simulations using different scenarios of increasing carbon dioxide (CO2) concentrations are employed. We show that, in contrast to a wide SST warming, the atmospheric simulations with a narrow SST warming produce stronger and very zonally extended Rossby wave sources, leading to stronger and eastward shifted troughs and ridges. Simulations with SST anomalies, either in narrow or wide latitude bands only modify the intensity of the troughs and ridges. SST anomalies outside the narrow latitude band of 5°S–5°N do not significantly affect the spatial pattern of SRW propagation. AOGCM simulations with 1 %/year increasing CO2 concentrations or 4 times preindustrial CO2 levels reveal very similar SRW responses to the atmospheric only simulations with anomalously wider SST warming. Our results suggest that in a warmer climate, the changes in the strength and width of the HC act in concert to significantly alter SRW sources and propagation characteristics.

Country
Australia
Keywords

stationary Rossby wave, 551, atmospheric simulations, climate change, coupled simulations, Hadley circulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
bronze