Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oecologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oecologia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oecologia
Article . 2006
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Marine reserves demonstrate trophic interactions across habitats

Authors: Marti J. Anderson; Russell C. Babcock; Shin Kato; Tim J. Langlois;

Marine reserves demonstrate trophic interactions across habitats

Abstract

Several infaunal bivalve taxa show patterns of decreased biomass in areas with higher densities of adjacent reef-associated predators (the snapper, Pagrus auratus and rock lobster, Jasus edwardsii). A caging experiment was used to test the hypothesis that patterns observed were caused by predation, using plots seeded with a known initial density of the bivalve Dosinia subrosea to estimate survivorship. The caging experiment was replicated at several sites inside and outside two highly protected marine reserves: predators are significantly more abundant inside these reserves. Survivorship in fully caged, partially caged and open plots were then compared at sites having either low (non reserve) or high (reserve) predator density. The highest rates of survivorship of the bivalve were found in caged plots inside reserves and in all treatments outside reserves. However, inside reserves, open and partially caged treatments exhibited low survivorship. It was possible to specifically attribute much of this mortality to predation by large rock lobsters, due to distinctive marks on the valves of dead D. subrosea. This suggests that predation by large rock lobster could indeed account for the distributional patterns previously documented for certain bivalve populations. Our results illustrate that protection afforded by marine reserves is necessary to investigate how depletion through fishing pressure can change the role of upper-level predators and trophic processes between habitats.

Keywords

Oceans and Seas, Fisheries, Marine Biology, Biodiversity, Environment, Survival Analysis, Bivalvia, Species Specificity, Animals, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research