Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oecologiaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 2008
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nitrogen enrichment modifies plant community structure via changes to plant–soil feedback

Authors: Manning, P.; Morrison, S. A.; Bonkowski, M.; Bardgett, Richard D.;

Nitrogen enrichment modifies plant community structure via changes to plant–soil feedback

Abstract

We tested the hypothesis that N enrichment modifies plant-soil feedback relationships, resulting in changes to plant community composition. This was done in a two-phase glasshouse experiment. In the first phase, we grew eight annual plant species in monoculture at two levels of N addition. Plants were harvested at senescence and the effect of each species on a range of soil properties was measured. In the second phase, the eight plant species were grown in multi-species mixtures in the eight soils conditioned by the species in the first phase, at both levels of N addition. At senescence, species performance was measured as aboveground biomass. We found that in the first phase, plant species identity strongly influenced several soil properties, including microbial and protist biomass, soil moisture content and the availability of several soil nutrients. Species effects on the soil were mostly independent of N addition and several were strongly correlated with plant biomass. In the second phase, both the performance of individual species and overall community structure were influenced by the interacting effects of the species identity of the previous soil occupant and the rate of N addition. This indicates that N enrichment modified plant-soil feedback. The performance of two species correlated with differences in soil N availability that were generated by the species formerly occupying the soil. However, negative feedback (poorer performance on the soil of conspecifics relative to that of heterospecifics) was only observed for one species. In conclusion, we provide evidence that N enrichment modifies plant-soil feedback relationships and that these modifications may affect plant community composition. Field testing and further investigations into which mechanisms dominate feedback are required before we fully understand how and when feedback processes determine plant community responses to N enrichment.

Country
United Kingdom
Keywords

580, 570, Decomposition, Analysis of Variance, Soil community, Nitrogen, Plant competition, 500, Plant Development, Nitrogen deposition, Soil, Species Specificity, Nutrient availability, Biomass, Ecosystem, Soil Microbiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 10%