
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus

pmid: 23053228
Both atmospheric [CO2] and average surface temperatures are predicted to increase with potentially different, additive or opposing, effects on leaf quality and insect herbivore activity. Few studies have directly measured the interactive effects of concurrent changes in [CO2] and temperature on insect herbivores. None have done so over the entire developmental period of a tree-feeding insect, and none have compared responses to low pre-industrial [CO2] and present day [CO2] to estimate responses to future increases. Eucalypt herbivores may be particularly sensitive to climate-driven shifts in plant chemistry, as eucalypt foliage is naturally low in [N]. In this study, we assessed the development of the eucalypt herbivore Doratifera quadriguttata exposed concurrently to variable [CO2] (290, 400, 650 μmol mol(-1)) and temperature (ambient, ambient +4 °C) on glasshouse-grown Eucalyptus tereticornis. Overall, insects performed best on foliage grown at pre-industrial [CO2], indicating that modern insect herbivores have already experienced nutritional shifts since industrialisation. Rising [CO2] increased specific leaf mass and leaf carbohydrate concentration, subsequently reducing leaf [N]. Lower leaf [N] induced compensatory feeding and impeded insect performance, particularly by prolonging larval development. Importantly, elevated temperature dampened the negative effects of rising [CO2] on larval performance. Therefore, rising [CO2] over the past 200 years may have reduced forage quality for eucalypt insects, but concurrent temperature increases may have partially compensated for this, and may continue to do so in the future. These results highlight the importance of assessing plant-insect interactions within the context of multiple climate-change factors because of the interactive and potentially opposing effects of different factors within and between trophic levels.
- Western Sydney University Australia
- University of Canterbury New Zealand
- Western Sydney University Australia
Nitrogen, Climate Change, elevated carbon dioxide, Moths, Host-Parasite Interactions, 960305 - Ecosystem Adaptation to Climate Change, 050101 - Ecological Impacts of Climate Change, Animals, Herbivory, 580, Analysis of Variance, Eucalyptus, Temperature, carbon dioxide, Carbon Dioxide, herbivores, 070705 - Veterinary Immunology, Plant Leaves, Larva, Linear Models, insect-plant relationships
Nitrogen, Climate Change, elevated carbon dioxide, Moths, Host-Parasite Interactions, 960305 - Ecosystem Adaptation to Climate Change, 050101 - Ecological Impacts of Climate Change, Animals, Herbivory, 580, Analysis of Variance, Eucalyptus, Temperature, carbon dioxide, Carbon Dioxide, herbivores, 070705 - Veterinary Immunology, Plant Leaves, Larva, Linear Models, insect-plant relationships
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
