Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oecologiaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oecologia
Article . 2014
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Invertebrate herbivory increases along an experimental gradient of grassland plant diversity

Authors: Till Eggers; Wolfgang W. Weisser; Wolfgang W. Weisser; Jessy Loranger; Hannah Loranger; Hannah Loranger; Enrica De Luca; +4 Authors

Invertebrate herbivory increases along an experimental gradient of grassland plant diversity

Abstract

Plant diversity is a key driver of ecosystem functioning best documented for its influence on plant productivity. The strength and direction of plant diversity effects on species interactions across trophic levels are less clear. For example, with respect to the interactions between herbivorous invertebrates and plants, a number of competing hypotheses have been proposed that predict either increasing or decreasing community herbivory with increasing plant species richness. We investigated foliar herbivory rates and consumed leaf biomass along an experimental grassland plant diversity gradient in year eight after establishment. The gradient ranged from one to 60 plant species and manipulated also functional group richness (from one to four functional groups-legumes, grasses, small herbs, and tall herbs) and plant community composition. Measurements in monocultures of each plant species showed that functional groups differed in the quantity and quality of herbivory damage they experienced, with legumes being more damaged than grasses or non-legume herbs. In mixed plant communities, herbivory increased with plant diversity and the presence of two key plant functional groups in mixtures had a positive (legumes) and a negative (grasses) effect on levels of herbivory. Further, plant community biomass had a strong positive impact on consumed leaf biomass, but little effect on herbivory rates. Our results contribute detailed data from a well-established biodiversity experiment to a growing body of evidence suggesting that an increase of herbivory with increasing plant diversity is the rule rather than an exception. Considering documented effects of herbivory on other ecosystem functions and the increase of herbivory with plant diversity, levels of herbivory damage might not only be a result, but also a trigger within the diversity-productivity relationship.

Keywords

Fabaceae, Biodiversity, Poaceae, Invertebrates, Plant Leaves, Germany, Animals, Biomass, Herbivory, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%