Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oecologiaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oecologia
Article . 2014
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ecological functioning in grass–shrub Mediterranean ecosystems measured by eddy covariance

Authors: Francisco Domingo; A. Were; Oscar Perez-Priego; Olga Uclés; B.R. Reverter; Cecilio Oyonarte; Laura Morillas; +2 Authors

Ecological functioning in grass–shrub Mediterranean ecosystems measured by eddy covariance

Abstract

Climate change may alter ecosystem functioning, as assessed via the net carbon (C) exchange (NEE) with the atmosphere, composed of the biological processes photosynthesis (GPP) and respiration (R(eco)). In addition, in semi-arid Mediterranean ecosystems, a significant fraction of respired CO2 is stored in the vadose zone and emitted afterwards by subsoil ventilation (VE), contributing also to NEE. Such conditions complicate the prediction of NEE for future change scenarios. To evaluate the possible effects of climate change on annual NEE and its underlying processes (GPP, R(eco) and VE) we present, over a climate/altitude range, the annual and interannual variability of NEE, GPP, R(eco) and VE in three Mediterranean sites. We found that annual NEE varied from a net source of around 130 gC m(-2) in hot and arid lowlands to a net sink of similar magnitude for alpine meadows (above 2,000 m a.s.l) that are less water stressed. Annual net C fixation increased because of increased GPP during intermittent and several growth periods occurring even during winter, as well as due to decreased VE. In terms of interannual variability, the studied subalpine site behaved as a neutral C sink (from emission of 49 to fixation of 30 gC m(-2) year(-1)), with precipitation as the main factor controlling annual GPP and R(eco). Finally, the importance of VE as 0-23% of annual NEE is highlighted, indicating that this process could shift some Mediterranean ecosystems from annual C sinks to sources.

Keywords

Mediterranean Region, Altitude, Climate, Climate Change, Carbon Dioxide, Poaceae, Trees, Photosynthesis, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average
bronze