
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ecological functioning in grass–shrub Mediterranean ecosystems measured by eddy covariance

pmid: 24817197
Climate change may alter ecosystem functioning, as assessed via the net carbon (C) exchange (NEE) with the atmosphere, composed of the biological processes photosynthesis (GPP) and respiration (R(eco)). In addition, in semi-arid Mediterranean ecosystems, a significant fraction of respired CO2 is stored in the vadose zone and emitted afterwards by subsoil ventilation (VE), contributing also to NEE. Such conditions complicate the prediction of NEE for future change scenarios. To evaluate the possible effects of climate change on annual NEE and its underlying processes (GPP, R(eco) and VE) we present, over a climate/altitude range, the annual and interannual variability of NEE, GPP, R(eco) and VE in three Mediterranean sites. We found that annual NEE varied from a net source of around 130 gC m(-2) in hot and arid lowlands to a net sink of similar magnitude for alpine meadows (above 2,000 m a.s.l) that are less water stressed. Annual net C fixation increased because of increased GPP during intermittent and several growth periods occurring even during winter, as well as due to decreased VE. In terms of interannual variability, the studied subalpine site behaved as a neutral C sink (from emission of 49 to fixation of 30 gC m(-2) year(-1)), with precipitation as the main factor controlling annual GPP and R(eco). Finally, the importance of VE as 0-23% of annual NEE is highlighted, indicating that this process could shift some Mediterranean ecosystems from annual C sinks to sources.
- Spanish National Research Council Spain
- University of Granada Spain
- University of Almería Spain
- Universidade do Vale do Paraíba Brazil
- University of Almería Spain
Mediterranean Region, Altitude, Climate, Climate Change, Carbon Dioxide, Poaceae, Trees, Photosynthesis, Ecosystem
Mediterranean Region, Altitude, Climate, Climate Change, Carbon Dioxide, Poaceae, Trees, Photosynthesis, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
