Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oecologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oecologia
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MediaTUM
Article . 2022
Data sources: MediaTUM
Oecologia
Article . 2023
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of plant diversity on species-specific herbivory: patterns and mechanisms

Authors: M. Bröcher; A. Ebeling; L. Hertzog; C. Roscher; W. Weisser; S. T. Meyer;

Effects of plant diversity on species-specific herbivory: patterns and mechanisms

Abstract

AbstractInvertebrate herbivory can shape plant communities when impacting growth and fitness of some plant species more than other species. Previous studies showed that herbivory varies among plant species and that species-specific herbivory is affected by the diversity of the surrounding plant community. However, mechanisms underlying this variation are still poorly understood. In this study, we investigate how plant traits and plant apparency explain differences in herbivory among plant species and we explore the effect of plant community diversity on these species-specific relationships. We found that species differed in the herbivory they experienced. Forbs were three times more damaged by herbivores than grasses. Variability within grasses was caused by differences in leaf dry matter content (LDMC). Furthermore, higher plant diversity increased herbivory on 15 plant species and decreased herbivory on nine species. Variation within forb and grass species in their response to changing plant diversity was best explained by species’ physical resistance (LDMC, forbs) and biomass (grasses). Overall, our results show that herbivory and diversity effects on herbivory differ among species, and that, depending on the plant functional group, either species-specific traits or apparency are driving those differences. Thus, herbivores might selectively consume palatable forbs or abundant grasses with contrasting consequences for plant community composition in grasslands dominated by either forbs or grasses.

Country
Germany
Keywords

Community Ecology-Original Research ; Plant-insect interaction ; Ecosystem function ; Functional groups ; Biodiversity ; Grasslands ; Biological Sciences, Community Ecology–Original Research, Animals, Herbivory, Biomass, Biodiversity, Plants, Poaceae, Invertebrates, Ecosystem, ddc: ddc:

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities
Energy Research