Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oecologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oecologia
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
Oecologia
Article . 2024
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temperature has an overriding role compared to photoperiod in regulating the seasonal timing of winter moth egg hatching

Authors: Natalie E. van Dis; Lucia Salis; Marcel E. Visser;

Temperature has an overriding role compared to photoperiod in regulating the seasonal timing of winter moth egg hatching

Abstract

AbstractTo accurately predict species’ phenology under climate change, we need to gain a detailed mechanistic understanding of how different environmental cues interact to produce the seasonal timing response. In the winter moth (Operophtera brumata), seasonal timing of egg hatching is strongly affected by ambient temperature and has been under strong climate change-induced selection over the past 25 years. However, it is unclear whether photoperiod received at the egg stage also influences timing of egg hatching. Here, we investigated the relative contribution of photoperiod and temperature in regulating winter moth egg development using two split-brood experiments. We experimentally shifted the photoperiod eggs received by 2–4 weeks compared to the actual calendar date and measured the timing of egg hatching, both at a constant temperature and in combination with two naturally changing temperature treatments – mimicking a cold and a warm year. We found an eight-fold larger effect of temperature compared to photoperiod on egg development time. Moreover, the very small photoperiod effects we found were outweighed by both between- and within-clutch variation in egg development time. Thus, we conclude that photoperiod received at the egg stage does likely not play a substantial role in regulating the seasonal timing of egg hatching in the winter moth. These insights into the regulatory mechanism of seasonal timing could have important implications for predicting insect climate change adaptation, as we might expect different targets of selection depending on the relative contribution of different environmental cues.

Keywords

Photoperiod, Climate Change, Temperature, Animals, Seasons, Moths, Ovum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid
Related to Research communities
Energy Research