Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DI-fusionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DI-fusion
Article . 2019 . Peer-reviewed
Data sources: DI-fusion
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trees
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wood anatomy variability under contrasted environmental conditions of common deciduous and evergreen species from central African forests

Authors: Jan Van den Bulcke; Charles De Cannière; Joris Van Acker; Bhely Angoboy Ilondea; Koen Hufkens; Hans Beeckman; Stephan Hahn; +6 Authors

Wood anatomy variability under contrasted environmental conditions of common deciduous and evergreen species from central African forests

Abstract

Wood density profiles revealed significant differences in wood formation along a precipitation gradient in the Congo Basin. The response of trees to climate change varies depending on leaf phenology properties. Tropical forests face increasing pressures due to climate change and yet, the response of trees to varying climate conditions remains poorly understood. In the present study, we aim to fill some gaps by comparing the leaf phenology and the pith-to-bark wood anatomical variability of 13 common tree species of the Democratic Republic of Congo among three sites presenting contrasted rainfall regimes. We measured pith-to-bark density profiles on which we applied wavelet analyses to extract three descriptors, which we further used as proxies to describe and compare wood anatomical variability. They describe the growth periodicity, regularity and the amplitude of variations of the anatomical patterns. Our results show that evergreen species tend to have significantly higher anatomical variability where rainfall seasonality is more pronounced. Deciduous species, in spite of shedding leaves for longer periods in drier sites, did not show significant differences in their anatomical variability. The analyses of density profiles and phenology records suggest that the seasonality of precipitation influences both leaf phenology and cambial activity. The high intra-site variability in phenology and anatomy suggests that site-related micro-climate conditions also influence cambial activity.

Country
Belgium
Keywords

Sylviculture, Wood anatomy, Ecologie, Wavelet analysis, Sciences de l'ingénieur, Physiologie générale, Leaf phenology, Climate change, Tropical tree growth, Botanique générale, Wood density

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green