Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Biometeorology
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparison of methods to estimate seasonal phenological development from BBCH scale recording

Authors: Nicole Estrella; Annette Menzel; Christine Cornelius; Hannes Petermeier;

A comparison of methods to estimate seasonal phenological development from BBCH scale recording

Abstract

The BBCH scale is a two-digit key of growth stages in plants that is based on standardised definitions of plant development stages. The extended BBCH scale, used in this paper, enables the coding of the entire development cycle of all mono- and dicotyledonous plants. Using this key, the frequency distribution of phenological stages was recorded which required a less intense sampling frequency. The onset dates of single events were later estimated from the frequency distribution of BBCH codes. The purpose of this study was to present four different methods from which those onset dates can be estimated. Furthermore, the effects of (1) a less detailed observation key and (2) changes in the sampling frequency on estimates of onset dates were assessed. For all analyses, phenological data from the entire development cycle of four grass species were used. Estimates of onset dates determined by Weighted Plant Development (WPD), Pooled pre-/post-Stage Development (PSD), Cumulative Stage Development (CSD) and Ordinal Logistic Regression (OLR) methods can all be used to determine the phenological progression of plants. Moreover, results show that a less detailed observation key still resulted in similar onset dates, unless more than two consecutive stages were omitted. Further results reveal that the simulation of a less intense sampling frequency had only small impacts on estimates of onset dates. Thus, especially in remote areas where an observation interval of a week is not feasible, estimates derived from the frequency distribution of BBCH codes appear to be appropriate.

Related Organizations
Keywords

Time Factors, Climate Change, Population Dynamics, Poaceae, Logistic Models, Species Specificity, Germany, Seasons, Ecosystem, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%