Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theoretical and Appl...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Theoretical and Applied Climatology
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Theoretical and Applied Climatology
Article
License: CC BY
Data sources: UnpayWall
https://dx.doi.org/10.60692/p7...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/56...
Other literature type . 2019
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatial analysis of temperature time series over the Upper Indus Basin (UIB) Pakistan

التحليل المكاني للسلاسل الزمنية لدرجة الحرارة فوق حوض السند الأعلى (UIB) باكستان
Authors: Yasir Latif; Sher Muhammad; Sher Muhammad; Muhammad Atif Wazir; Muhammad Atif Wazir; Muhammad Yaseen; Ma Yaoming;

Spatial analysis of temperature time series over the Upper Indus Basin (UIB) Pakistan

Abstract

AbstractRunoff generated from the Upper Indus Basin (UIB) mainly originates in the massifs of the Hindukush–Karakoram–Himalaya (HKH) region of Pakistan. Water supply in early spring depends upon the snow accumulation in the winter and the subsequent temperature. Seasonal temperature variations corroborate the contemporary dynamics of snow and glaciers. Recently, there has been increasing evidence of accelerated warming in high mountain areas, termed as elevation-dependent warming (EDW). We have identified trends, analyzed inconsistencies, and calculated changes in the maximum, minimum, mean and diurnal temperature range (Tmax,Tmin,Tmean, and DTR) at 20 weather stations during four-time series: 1961–2013 (first), 1971–2013 (second), 1981–2013 (third), and 1991–2013 (fourth). We employed the Mann–Kendall test to determine the existence of a trend and Sen’s method for the estimation of prevailing trends, whereas homogeneity analysis was applied before trend identification using three different tests. This study revealed that the largest and smallest magnitudes of trends appeared in the winter and summer, respectively, particularly during the fourth data series.Tmaxrevealed robust warming at ten stations, most remarkably at Gupis, Khunjrab, and Naltar at rates of 0.29, 0.36, and 0.43 °C/decade, respectively, during the fourth series. We observed thatTminexhibits a mixed pattern of warming and cooling during the second and third series, but cooling becomes stronger during the fourth series, exhibiting significant trends at twelve stations. Khunjrab and Naltar showed steady warming during the fourth series (spring), at rates of 0.26 and 0.13 °C/decade in terms ofTmean. The observed decreases in DTR appeared stronger in the fourth series during the summer. These findings tend to partially support the notion of EDW but validate the dominance of cooling spatially and temporally.

Keywords

Atmospheric Science, Atmospheric sciences, Physical geography, Time series, Climate Change and Variability Research, Oceanography, Environmental science, Indus, Meteorology, Snow, Series (stratigraphy), FOS: Mathematics, Climate change, Glacier, Biology, Water Science and Technology, Climatology, Global and Planetary Change, Geography, Ecology, Maximum temperature, Global warming, Statistics, Paleontology, Geology, FOS: Earth and related environmental sciences, Surface runoff, Structural basin, Earth and Planetary Sciences, Hydrological Modeling and Water Resource Management, FOS: Biological sciences, Physical Sciences, Environmental Science, Impacts of Climate Change on Glaciers and Water Availability, Mathematics, Climate Modeling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
hybrid