Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hydrogeology Journal
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Time constant of hydraulic-head response in aquifers subjected to sudden recharge change: application to large basins

Authors: Vasseur, Guy; Rousseau-Gueutin, Pauline; De Marsily, Ghislain;

Time constant of hydraulic-head response in aquifers subjected to sudden recharge change: application to large basins

Abstract

Analytical formulae are proposed to describe the first-order temporal evolution of the head in large groundwater systems (such as those found in North Africa or eastern Australia) that are subjected to drastic modifications of their recharge conditions (such as those in Pleistocene and Holocene times). The mathematical model is based on the hydrodynamics of a mixed-aquifer system composed of a confined aquifer connected to an unconfined one with a large storage capacity. The transient behaviour of the head following a sudden change of recharge conditions is computed with Laplace transforms for linear one-dimensional and cylindrical geometries. This transient evolution closely follows an exponential trend exp(−t/τ). The time constant τ is expressed analytically as a function of the various parameters characterizing the system. In many commonly occurring situations, τ depends on only four parameters: the width a c of the main confined aquifer, its transmissivity T c, the integrated storage situated upstream in the unconfined aquifer M = S u a u, and a curvature parameter accounting for convergence/divergence effects. This model is applied to the natural decay of large aquifer basins of the Sahara and Australia following the end of the mid-Holocene humid period. The observed persistence of the resource is discussed on the basis of the time constant estimated with the system parameters. This comparison confirms the role of the upstream water reserve, which is modelled as an unconfined aquifer, and highlights the significant increase of the time constant in case of converging flow.

Country
France
Keywords

Analytical solution, [SDU]Sciences of the Universe [physics], Groundwater flow, Groundwater recharge/water budget, Time constant, Climate change, [ SDU ] Sciences of the Universe [physics]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
bronze