Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clean Technologies and Environmental Policy
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A GIS-based evaluation of risks due to trihalomethane exposure during showering in coastal Texas

Authors: Venkatesh Uddameri; Kartik Venkataraman;

A GIS-based evaluation of risks due to trihalomethane exposure during showering in coastal Texas

Abstract

Disinfection of water supplies with chlorine is essential to water treatment, but can lead to the formation of trihalomethanes (THMs) in the presence of natural organic matter. Exposure to THMs via inhalation during daily activities such as showering can significantly increase cancer risks. An innovative decision support system was developed for evaluating THM exposure and risks in water supplies in the Gulf Coast region of Texas by combining a shower THM volatilization model, geospatial analysis techniques, and risk assessment methodologies. Based on THM data from fourteen locations in the region, a power-law equation was developed to predict the formation of THMs in groundwater wells. Health risks associated with THMs in the water supplies of the Gulf Coast of Texas were evaluated. Cancer risks were found to vary from 7.14 × 10−7 to 7.75 × 10−6. While two-thirds of the geographical area was below the threshold risk of 1 × 10−6, it accounted for only a tenth of the total population. Metropolitan areas such as Corpus Christi and McAllen, which currently use surface water sources, and Houston, which is seeking alternate water sources due to subsidence issues, were found to have significant cancer risks (in excess of one in a million). A third of the population of Texas is housed in the Gulf Coast region, and with more population migration toward the metropolitan areas, it is recommended that water resource management decisions be made taking into consideration both the quantity and quality of water available.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average