Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Industria...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Industrial Microbiology and Biotechnology
Article . 2012 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lasiodiplodan, an exocellular (1→6)-β-d-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity

Authors: Neelam Khaper; Mário Antônio Alves da Cunha; Patrícia Teixeira Marques; Robert F.H. Dekker; Raphael Coelli Ivanov; Janaína Angela Túrmina; Roney R. Barroso; +3 Authors

Lasiodiplodan, an exocellular (1→6)-β-d-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity

Abstract

Abstract Lasiodiplodan, an exopolysaccharide of the (1→6)-β-d-glucan type, is produced by Lasiodiplodia theobromae MMPI when grown under submerged culture on glucose. The objective of this study was to evaluate lasiodiplodan production by examining the effects of carbon (glucose, fructose, maltose, sucrose) and nitrogen sources (KNO3, (NH4)2SO4, urea, yeast extract, peptone), its production in shake flasks compared to a stirred-tank bioreactor, and to study the rheology of lasiodiplodan, and lasiodiplodan’s anti-proliferative effect on breast cancer MCF-7 cells. Although glucose (2.05 ± 0.05 g L−1), maltose (2.08 ± 0.04 g L−1) and yeast extract (2.46 ± 0.06 g L−1) produced the highest amounts of lasiodiplodan, urea as N source resulted in more lasiodiplodan per unit biomass than yeast extract (0.74 ± 0.006 vs. 0.22 ± 0.008 g g−1). A comparison of the fermentative parameters of L. theobromae MMPI in shake flasks and a stirred-tank bioreactor at 120 h on glucose as carbon source showed maximum lasiodiplodan production in agitated flasks (7.01 ± 0.07 g L−1) with a specific yield of 0.25 ± 0.57 g g−1 and a volumetric productivity of 0.06 ± 0.001 g L−1 h−1. A factorial 22 statistical design developed to evaluate the effect of glucose concentration (20–60 g L−1) and impeller speed (100–200 rpm) on lasiodiplodan production in the bioreactor showed the highest production (6.32 g L−1) at 72 h. Lasiodiplodan presented pseudoplastic behaviour, and the apparent viscosity increased at 60°C in the presence of CaCl2. Anti-proliferative activity of lasiodiplodan was demonstrated in MCF-7 cells, which was time- and dose-dependent with an IC50 of 100 μg lasiodiplodan mL−1.

Keywords

Sucrose, Nitrogen, Breast Neoplasms, Kinetics, Bioreactors, Glucose, Ascomycota, Fermentation, MCF-7 Cells, Humans, Biomass, Maltose, Rheology, Glucans, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
gold
Published in a Diamond OA journal
Related to Research communities
Energy Research