Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao EcoHealtharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EcoHealth
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
EcoHealth
Article . 2012
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Weather, Water Quality and Infectious Gastrointestinal Illness in Two Inuit Communities in Nunatsiavut, Canada: Potential Implications for Climate Change

Authors: Sherilee L. Harper; Victoria L. Edge; Olaf Berke; Scott A. McEwen; Corinne J. Schuster-Wallace;

Weather, Water Quality and Infectious Gastrointestinal Illness in Two Inuit Communities in Nunatsiavut, Canada: Potential Implications for Climate Change

Abstract

Climate change is expected to cause changes in precipitation quantity, intensity, frequency and duration, which will subsequently alter environmental conditions and might increase the risk of waterborne disease. The objective of this study was to describe the seasonality of and explore associations between weather, water quality and occurrence of infectious gastrointestinal illnesses (IGI) in two communities in Nunatsiavut, Canada. Weather data were obtained from meteorological stations in Nain (2005-2008) and Rigolet (2008). Free-chlorine residual levels in drinking water were extracted from municipal records (2005-2008). Raw surface water was tested weekly for total coliform and E. coli counts. Daily counts of IGI-related clinic visits were obtained from health clinic registries (2005-2008). Analysis of weather and health variables included seasonal-trend decomposition procedures based on Loess. Multivariable zero-inflated Poisson regression was used to examine potential associations between weather events (considering 0-4 week lag periods) and IGI-related clinic visits. In Nain, water volume input (rainfall + snowmelt) peaked in spring and summer and was positively associated with levels of raw water bacteriological variables. The number of IGI-related clinic visits peaked in the summer and fall months. Significant positive associations were observed between high levels of water volume input 2 and 4 weeks prior, and IGI-related clinic visits (P < 0.05). This study is the first to systematically gather, analyse and compare baseline data on weather, water quality and health in Nunatsiavut, and illustrates the need for high quality temporal baseline information to allow for detection of future impacts of climate change on regional Inuit human and environmental health.

Keywords

Adult, Male, Canada, Adolescent, Gastrointestinal Diseases, Climate Change, Communicable Diseases, Young Adult, Humans, Poisson Distribution, Child, Weather, Aged, Infant, Middle Aged, Inuit, Child, Preschool, Female, Water Microbiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 10%