Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aerobiologia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Aerobiologia
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Airborne Cladosporium and Alternaria spore concentrations through 26 years in Copenhagen, Denmark

Authors: Yulia Olsen; Carsten Ambelas Skjøth; Ole Hertel; Karen Rasmussen; Torben Sigsgaard; Ulrich Gosewinkel;

Airborne Cladosporium and Alternaria spore concentrations through 26 years in Copenhagen, Denmark

Abstract

Cladosporium spp. and Alternaria spp. spores are dominating the airspora of Denmark. Currently, little is known about the influence of climate change on the fungal spore abundance in the air. The aim of this study was to examine temporal changes in airborne Alternaria and Cladosporium spores over 26 years. This is the first report of long-term airborne Cladosporium spore occurrence in Denmark. Air spore concentrations were obtained with a Burkard volumetric spore sampler placed in Copenhagen, Denmark, during June–September, 1990–2015. The highest monthly Spore integrals (SIn) for Alternaria were measured in August, whereas for Cladosporium July SIn was nearly as high as August SIn. Average Alternaria seasonal spore integral (SSIn) was 8615 Spores day m−3, while average 3-month (July–September) Cladosporium SIn was 375,533 Spores day m−3. Despite increasing annual temperature and decreasing relative humidity, we found a decreasing trend for Alternaria seasonal SIn (Slope = − 277, R2 = 0.38, p < 0.05), Alternaria (Slope = − 31, R2 = 0.27, p < 0.05) and Cladosporium (Slope = − 440, R2 = 0.23, p < 0.05) annual peak concentrations. We did not find any statistically significant trends for airborne Alternaria seasonal characteristics and duration, and likewise for Cladosporium 3-month SIn and peak concentration dates. Mean temperature was the main meteorological factor affecting daily spore concentrations. However, effect of meteorological parameters on daily spore concentrations was stronger for Cladosporium (R2 = 0.41) than for Alternaria (R2 = 0.21). Both genera had diurnal peaks during the day hours, earlier for Cladosporium (11:30–14:30) and later for Alternaria (15:00–19:00). Although Alternaria and Cladosporium daily concentrations were moderately correlated (Spearman’s correlation coefficient: rs = 0.55, p < 0.05), their overall annual indices were different, which indicates different sources and different factors determining spore release. We explain temporal decreasing trends in Alternaria SSIn by growing urbanisation around Copenhagen and by changes in agricultural practices.

Country
United Kingdom
Related Organizations
Keywords

WEATHER, CLIMATE-CHANGE, Annual trends, POLAND, ALLERGENIC FUNGAL SPORES, Alternaria, METEOROLOGY, AIR-POLLUTION, ATMOSPHERIC CONCENTRATIONS, Respiratory allergy, GANODERMA, Land use, PATTERNS, Climate change, Cladosporium, DIDYMELLA

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Green
bronze