Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agroforestry Systems
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Allometric equations for predicting above-ground biomass of selected woody species to estimate carbon in East African rangelands

Authors: Feyisa, Kenea; Beyene, Sheleme; Megersa, Bekele; Said, Mohammed Y.; Leeuw, Jan de; Angassa, Ayana;

Allometric equations for predicting above-ground biomass of selected woody species to estimate carbon in East African rangelands

Abstract

We developed species specific equations to predict aboveground biomass (AGB) of ten woody species in Borana rangelands of southern Ethiopia. A total of 150 plants 15 for each species were measured for biometric variables including the diameter at stump height (DSH), diameter at breast height (DBH), tree height (TH) and crown diameters were destructively harvested to obtain dry biomass. Many equations that related three biomass components: total aboveground, stem and branches to single or combination of predicator variables: DSH, DBH, TH, crown area (CA) and crown volume (CV) fit the data well to predict total AGB and by components for each of the species (adj.R2 > 0.80; P 0.80; P 0.93; P < 0.0001. A generalized mixed-species allometric model developed from the pooled data of seven species was most accurately predicted by the combination of three predicators (DSH-TH-CA models), with adj. R2 between 0.84 and 0.90 for all AGB categories. Hence, our species-specific allometric models could be adopted for the indirect biomass estimation in semi-arid savanna ecosystem of southern Ethiopia. The mixed species allometric models will give a good opportunity when species-specific equations are not available and contribute to estimate the biomass and carbon stock in woody vegetations of East African rangelands.

Country
France
Keywords

biomass, carbon, equations, species, rangelands

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Green