
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
H2O and CO2 Dilution in MILD Combustion of Simple Hydrocarbons

[object ObjectMILD combustion is a very attractive technology because of its intrinsic features for energy production from diluted gas deriving from bio- or thermochemical degradation of biomass. An effective use of such a technology for diluted fuel requires a thorough analysis of ignition and oxidation behavior to highlight the potential effects of the different fuel components on the basis of temperature and diluent/oxygen/fuel mixture composition. In this work, ignition and oxidation of a model gas surrogate for the gaseous fraction of biomass pyrolysis products containing C1-C2 species, CO and CO2 were experimentally and numerically studied over a wide range of temperature and overall composition in the presence of large amounts of CO2 or H2O. Experimental results showed that such species significantly alter the evolution of the ignition process in dependence on temperature range and mixture composition. Several kinetic models were tested to simulate experimental results. Significant discrepancies occur, especially in the case of steam dilution. Numerical analyses suggested that such diluents acted mainly as third body species at low temperatures, conditioning both radical production pathways and the relative weight of C1 oxidation/recombination routes, while strongly interacting with the H2/O2 high temperature branching mechanisms at high temperatures. Further analyses are mandatory to improve the predictability of the models and extend the applicability of the chemical schemes to non-standard conditions.
Auto-ignition delay times; Biogas; Chemical kinetics; Diluted combustion; Chemical Engineering (all); Physics and Astronomy (all); Physical and Theoretical Chemistry, Combustion, Biogas, Auto-ignition delay times, 620, Chemical kinetics, Physics and Astronomy (all), Diluted combustion · Auto-ignition delay times · Biogas · Chemical kinetics, Chemical Engineering (all), Physical and Theoretical Chemistry, Diluted combustion
Auto-ignition delay times; Biogas; Chemical kinetics; Diluted combustion; Chemical Engineering (all); Physics and Astronomy (all); Physical and Theoretical Chemistry, Combustion, Biogas, Auto-ignition delay times, 620, Chemical kinetics, Physics and Astronomy (all), Diluted combustion · Auto-ignition delay times · Biogas · Chemical kinetics, Chemical Engineering (all), Physical and Theoretical Chemistry, Diluted combustion
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
