
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Unusual suspects in the usual places: a phylo-climatic framework to identify potential future invasive species

Unusual suspects in the usual places: a phylo-climatic framework to identify potential future invasive species
A framework for identifying species that may become invasive under future climate conditions is presented, based on invader attributes and biogeography in combination with projections of future climate. We illustrate the framework using the CLIMEX niche model to identify future climate suitability for three species of Hawkweed that are currently present in the Australian Alps region and related species that are present in the neighbouring region. Potential source regions under future climate conditions are identified, and species from those emerging risk areas are identified. We use dynamically downscaled climate projections to complement global analyses and provide fine-scale projections of suitable climate for current and future (2070–2099) conditions at the regional scale. Changing climatic conditions may reduce the suitability for some invasive species and improve it for others. Invasive species with distributions strongly determined by climate, where the projected future climate is highly suitable, are those with the greatest potential to be future invasive species in the region. As the Alps region becomes warmer and drier, many more regions of the world become potential sources of invasive species, although only one additional species of Hawkweed is identified as an emerging risk. However, in the longer term, as the species in these areas respond to global climate change, the potential source areas contract again to match higher altitude regions. Knowledge of future climate suitability, based on species-specific climatic tolerances, is a useful step towards prioritising management responses such as targeted eradication and early intervention to prevent the spread of future invasive species.
- University of Queensland Australia
- University of Tasmania Australia
- University of Tasmania Australia
- University of Queensland Australia
- CSIRO Ocean and Atmosphere Australia
Weed risk assessment, Evolution, regional climate model, species distrribution modelling, Hawkweeds, invasive species, 1105 Ecology, climate change, Behavior and Systematics, Climate change, Species distribution models, Regional climate projections, 2303 Ecology
Weed risk assessment, Evolution, regional climate model, species distrribution modelling, Hawkweeds, invasive species, 1105 Ecology, climate change, Behavior and Systematics, Climate change, Species distribution models, Regional climate projections, 2303 Ecology
2 Data sources, page 1 of 1
- datarepository::unknown Compatibility:Not yet registeredIsRelatedToAll Research products
arrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fairsharing_::6e5025ccc7d638ae4e724da8938450a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fairsharing_::6e5025ccc7d638ae4e724da8938450a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu - datarepository::unknown Compatibility:collected from a compatible aggregatorIsRelatedToAll Research products
arrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=re3data_____::194f60618405f8d2dc58ea68d968a104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=re3data_____::194f60618405f8d2dc58ea68d968a104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
