Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biogeochemistry
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The response of soil respiration to climatic drivers in undrained forest and drained oil palm plantations in an Indonesian peatland

Authors: E. Swails; D. Hertanti; K. Hergoualc’h; L. Verchot; D. Lawrence;

The response of soil respiration to climatic drivers in undrained forest and drained oil palm plantations in an Indonesian peatland

Abstract

To accurately quantify tropical peatlands’ contribution to global greenhouse gas emissions, and to understand how emissions from peat may change in the future, long-term measurements over seasons and years are needed. Sampling soil respiration over a range of temperature and moisture conditions in the field is valuable for understanding how peat soil emissions may respond to climate change. We collected monthly measurements of total soil respiration, moisture and temperature from forest and smallholder oil palm plantations on peat in Central Kalimantan, Indonesia. Our study period, from January 2014 through September 2015, covered wet–dry transitions during 1 year with relatively normal precipitation and one El Nino year. Oil palm plots, with lower water table, had 22% higher total soil respiration (0.71 ± 0.04 g CO2 m-2 h-1) than forest plots (0.58 ± 0.04 g CO2 m-2 h-1) over the entire monitoring period. However, during the El Nino event in September 2015, despite overall lower water table levels in oil palm plots, total soil respiration was higher in forest (1.24 ± 0.20 g CO2 m-2 h-1) than in oil palm (0.90 ± 0.09 g CO2 m-2 h-1). Land-use change continues to be an important driver of carbon dioxide (CO2) emissions from Indonesian peatlands. However, the stronger response of total soil respiration to extreme drought in forest indicates the potential importance of climate regime in determining future net carbon (C) emissions from these ecosystems. Future warming and increased intensity of seasonal drying may increase C emissions from Indonesian peatlands, regardless of land-use.

Country
France
Keywords

oil palms, indonesia, land use, soil respiration, climate change, peat, plantations, peatlands

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
bronze