Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeochemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biogeochemistry
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biogeochemistry
Article
License: CC BY
Data sources: UnpayWall
https://dx.doi.org/10.60692/qf...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/bf...
Other literature type . 2019
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat

التفاعلات بين الكربون العطوب ودرجة الحرارة واستخدام الأراضي تنظم إنتاج ثاني أكسيد الكربون والميثان في الخث الاستوائي
Authors: Nicholas T. Girkin; Selvakumar Dhandapani; Stephanie Evers; Nick Ostle; Benjamin L. Turner; Sofie Sjögersten;

Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat

Abstract

AbstractTropical peatlands are a significant carbon store and contribute to global carbon dioxide (CO2) and methane (CH4) emissions. Tropical peatlands are threatened by both land use and climate change, including the alteration of regional precipitation patterns, and the 3–4 °C predicted warming by 2100. Plant communities in tropical peatlands can regulate greenhouse gas (GHG) fluxes through labile carbon inputs, but the extent to which these inputs regulate the temperature response of CO2 and CH4 production in tropical peat remains unclear. We conducted an anoxic incubation experiment using three peat types of contrasting botanical origin to assess how carbon addition affects the temperature response (Q10) of CO2 and CH4 production. Peats from forested peatlands in Panama and Malaysia, and a converted oil palm and pineapple intercropping system in Malaysia, differed significantly in redox potential, total carbon and carbon: nitrogen ratio. The production of CO2 and CH4 varied significantly among peat types and increased with increasing temperature, with Q10s for both gases of 1.4. Carbon addition further increased gas fluxes, but did not influence the Q10 for CO2 or CH4 production or significantly affect the Q10 of either gas. These findings demonstrate that the production of CO2 and CH4 in tropical peat is sensitive to warming and varies among peat types, but that the effect of root inputs in altering Q10 appears to be limited.

Countries
United Kingdom, United Kingdom
Keywords

Composite material, 570, Carbon Dynamics in Peatland Ecosystems, Greenhouse gas, 333, 630, Environmental science, Methane Emissions, Impact of Climate Change on Forest Wildfires, Importance of Mangrove Ecosystems in Coastal Protection, Carbon fibers, Climate change, QD, Anoxic waters, Biology, Ecosystem, Global and Planetary Change, GE, Ecology, Peat, Composite number, Materials science, Chemistry, Carbon dioxide, FOS: Biological sciences, Environmental Science, Physical Sciences, Environmental chemistry, Methane

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
Green
hybrid