Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Climatic Changearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Climatic Change
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2017
Data sources: IRIS Cnr
CNR ExploRA
Article . 2017
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accuracy versus variability of climate projections for flood assessment in central Italy

Authors: Camici S; Brocca L; Moramarco T;

Accuracy versus variability of climate projections for flood assessment in central Italy

Abstract

Climatic extremes are changing and decision-makers express a strong need for reliable information on future changes over the coming decades as a basis for adaption strategies. In the hydrological-hydraulic context, to estimate changes on floods, a modeling chain composed by general circulation models (GCMs), bias correction (BC) methods, and hydrological modeling is generally applied. It is well-known that each step of the modeling chain introduces uncertainties, resulting in a reduction of the reliability of future climate projections. The main goal of this study is the assessment of the accuracy and variability (i.e., model accuracy, climate intermodel variability, and natural variability) on climate projections related to the present period. By using six different GCMs and two BC methods, the "climate intermodel variability" is evaluated. "Natural variability" is estimated through random realizations of stochastic weather generators. By comparing observed and simulated extreme discharge values, obtained through a continuous rainfall-runoff model, "model accuracy" is computed. The Tiber River basin in central Italy is used as a case study. Results show that in climate projections, model accuracy and climate intermodel variability components have to be clearly distinguished. For accuracy, the hydrological model is found to be the largest source of error; for variability, natural variability contributes for more than 75% to the total variability while GCM and BC have a much lower influence. Moreover, accuracy and variability components vary significantly, and not consistently, between catchments with different permeability characteristics.

Country
Italy
Keywords

variability, hydrology, climate change, uncertainty

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%